Quick Start¶
The following quick start example uses the IEEE 14 bus case, which can be found in the ESA repository or from Texas A&M University. Notes related to the case are available from the University of Washington.
You can find API documentation here and more examples here.
This “quick start” example has several purposes:
Illustrate how ESA is used with a simple power system model.
Demonstrate how to perform common tasks (e.g. solving the power flow, retrieving simulation data such as bus voltages and power injections).
Show the usefulness of some of ESA’s high level helper functions which do more than simply wrap SimAuto functions.
Before running the example below, define a CASE_PATH constant (the file
path to a PowerWorld .pwb
case file) like so (adapt the path as
needed for your system):
CASE_PATH = r"C:\Users\myuser\git\ESA\tests\cases\ieee_14\IEEE 14 bus_pws_version_21.pwb"
On to the quick start!
Start by Importing the SimAuto Wrapper (SAW) class:
>>> from esa import SAW
Initialize SAW instance using 14 bus test case:
>>> saw = SAW(FileName=CASE_PATH)
Solve the power flow:
>>> saw.SolvePowerFlow()
Retrieve power flow results for buses. This will return a Pandas DataFrame to make your life easier.
>>> bus_data = saw.get_power_flow_results('bus')
>>> bus_data
BusNum BusName BusPUVolt BusAngle BusNetMW BusNetMVR
0 1 Bus 1 1.060000 0.000000 232.391691 -16.549389
1 2 Bus 2 1.045000 -4.982553 18.300001 30.855957
2 3 Bus 3 1.010000 -12.725027 -94.199997 6.074852
3 4 Bus 4 1.017672 -10.312829 -47.799999 3.900000
4 5 Bus 5 1.019515 -8.773799 -7.600000 -1.600000
5 6 Bus 6 1.070000 -14.220869 -11.200000 5.229700
6 7 Bus 7 1.061520 -13.359558 0.000000 0.000000
7 8 Bus 8 1.090000 -13.359571 0.000000 17.623067
8 9 Bus 9 1.055933 -14.938458 -29.499999 4.584888
9 10 Bus 10 1.050986 -15.097221 -9.000000 -5.800000
10 11 Bus 11 1.056907 -14.790552 -3.500000 -1.800000
11 12 Bus 12 1.055189 -15.075512 -6.100000 -1.600000
12 13 Bus 13 1.050383 -15.156196 -13.500001 -5.800000
13 14 Bus 14 1.035531 -16.033565 -14.900000 -5.000000
Retrieve power flow results for generators:
>>> gen_data = saw.get_power_flow_results('gen')
>>> gen_data
BusNum GenID GenMW GenMVR
0 1 1 232.391691 -16.549389
1 2 1 40.000001 43.555957
2 3 1 0.000000 25.074852
3 6 1 0.000000 12.729700
4 8 1 0.000000 17.623067
To learn more about variables such as GenMW
, see
PowerWorld Variables.
Let’s change generator injections! But first, we need to know which fields PowerWorld needs in order to identify generators. These fields are known as key fields.
>>> gen_key_fields = saw.get_key_field_list('gen')
>>> gen_key_fields
['BusNum', 'GenID']
Change generator active power injection at buses 3 and 8 via SimAuto function:
>>> params = gen_key_fields + ['GenMW']
>>> values = [[3, '1', 30], [8, '1', 50]]
>>> saw.ChangeParametersMultipleElement(ObjectType='gen', ParamList=params, ValueList=values)
Did changing generator active power injections work? Let’s confirm:
>>> new_gen_data = saw.GetParametersMultipleElement(ObjectType='gen', ParamList=params)
>>> new_gen_data
BusNum GenID GenMW
0 1 1 232.391691
1 2 1 40.000001
2 3 1 30.000001
3 6 1 0.000000
4 8 1 50.000000
It would seem the generator active power injections have changed. Let’s re-run the power flow and see if bus voltages and angles change. Spoiler: they do.
>>> saw.SolvePowerFlow()
>>> new_bus_data = saw.get_power_flow_results('bus')
>>> cols = ['BusPUVolt', 'BusAngle']
>>> diff = bus_data[cols] - new_bus_data[cols]
>>> diff
BusPUVolt BusAngle
0 0.000000e+00 0.000000
1 -1.100000e-07 -2.015596
2 -5.700000e-07 -4.813164
3 -8.650700e-03 -3.920185
4 -7.207540e-03 -3.238592
5 -5.900000e-07 -4.586528
6 -4.628790e-03 -7.309167
7 -3.190000e-06 -11.655362
8 -7.189370e-03 -6.284631
9 -6.256150e-03 -5.987861
10 -3.514030e-03 -5.297895
11 -2.400800e-04 -4.709888
12 -1.351040e-03 -4.827348
13 -4.736110e-03 -5.662158
Wouldn’t it be easier if we could change parameters with a DataFrame? Wouldn’t it be nice if we didn’t have to manually check if our updates were respected? You’re in luck!
Create a copy of the gen_data
DataFrame so that we can modify its
values and use it to update parameters in PowerWorld. Then, change the
generation for the generators at buses 2, 3, and 6.
>>> gen_copy = gen_data.copy(deep=True)
>>> gen_copy.loc[gen_copy['BusNum'].isin([2, 3, 6]), 'GenMW'] = [0.0, 100.0, 100.0]
>>> gen_copy
BusNum GenID GenMW GenMVR
0 1 1 232.391691 -16.549389
1 2 1 0.000000 43.555957
2 3 1 100.000000 25.074852
3 6 1 100.000000 12.729700
4 8 1 0.000000 17.623067
Use helper function change_and_confirm_params_multiple_element
to
both command the generators and to confirm that PowerWorld respected the
command. This is incredibly useful because if you directly use
ChangeParametersMultipleElements
, PowerWorld may unexpectedly not
update the parameter you tried to change! If the following does not
raise an exception, we’re in good shape (it doesn’t)!
>>> saw.change_and_confirm_params_multiple_element(ObjectType='gen', command_df=gen_copy.drop('GenMVR', axis=1))
Run the power flow and observe the change in generation at the slack bus (bus 1):
>>> saw.SolvePowerFlow()
>>> new_gen_data = saw.get_power_flow_results('gen')
>>> new_gen_data
BusNum GenID GenMW GenMVR
0 1 1 62.128144 14.986289
1 2 1 0.000000 10.385347
2 3 1 100.000000 0.000000
3 6 1 100.000000 -3.893420
4 8 1 0.000000 17.399502
What if we try to change generator voltage set points? Start by getting a DataFrame with the current settings. Remember to always access the key fields so that when we want to update parameters later PowerWorld knows how to find the generators.
>>> gen_v = saw.GetParametersMultipleElement('gen', gen_key_fields + ['GenRegPUVolt'])
>>> gen_v
BusNum GenID GenRegPUVolt
0 1 1 1.060000
1 2 1 1.045000
2 3 1 1.025425
3 6 1 1.070000
4 8 1 1.090000
Now, change all voltage set points to 1 per unit:
>>> gen_v['GenRegPUVolt'] = 1.0
>>> gen_v
BusNum GenID GenRegPUVolt
0 1 1 1.0
1 2 1 1.0
2 3 1 1.0
3 6 1 1.0
4 8 1 1.0
>>> saw.change_and_confirm_params_multiple_element('gen', gen_v)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\Users\myuser\git\ESA\esa\saw.py", line 199, in change_and_confirm_params_multiple_element
raise CommandNotRespectedError(m)
esa.saw.CommandNotRespectedError: After calling ChangeParametersMultipleElement, not all parameters were actually changed within PowerWorld. Try again with a different parameter (e.g. use GenVoltSet instead of GenRegPUVolt).
So, PowerWorld didn’t respect that command, but we’ve been saved from
future confusion by the change_and_confirm_params_multiple_element
helper function.
Let’s call the LoadState SimAuto function:
>>> saw.LoadState()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\Users\myuser\git\ESA\esa\saw.py", line 967, in LoadState
return self._call_simauto('LoadState')
File "C:\Users\myuser\git\ESA\esa\saw.py", line 1227, in _call_simauto
raise PowerWorldError(output[0])
esa.saw.PowerWorldError: LoadState: State hasn't been previously stored.
This behavior is expected - it is not valid to call LoadState
if
SaveState
has not yet been called. In the exception above, not that
a PowerWorldError
is raised. This empowers users to handle
exceptions in whatever manner they see fit:
>>> from esa import PowerWorldError
>>> try:
... saw.LoadState()
... except PowerWorldError:
... print("Oh my, we've encountered a PowerWorldError!")
...
Oh my, we've encountered a PowerWorldError!
Finally, make sure to clean up after yourself so you don’t have COM objects hanging around.
>>> saw.exit()
After walking through this quick start, you should be ready to start using ESA to improve your simulation and analysis work flows!
For more examples, you can find them here.